
GridFTP and Cluster
Meltdown

When No Means 'Maybe Later'

John Bresnahan

bresnaha@mcs.anl.gov

Argonne National Laboratory

The University of Chicago

Overview

  Transfer Architectural Components
  GridFTP and RFT

  Subtle intentions of each service
  How each scales

  Meltdowns
  What is one, what isn't one

  Resource protection
  Interactions with resources
  How to determine limits

Architecture Overview

RFT
Client

VO 1

RFT
Service

GridFTP
Striped
Server

GridFTP
Client A

GridFTP
Server

GridFTP
Server GridFTP

Client B BB

VO 2

GridFTP
Striped
Server

GridFTP
Server

RFT

A

GridFTP Service

  On demand transfer service
  When a connection is formed, resources are

dedicated
  GridFTP might say “not now”
  Not a queuing service

  Transfer data as fast as possible
  Maximize resource usage

  Without over heating!

What GridFTP Does

  Fast data transfer service
  Cluster to cluster copy tool

  Intra-cluster broadcast tool
  Multi-cast transfers

  Scalable
  Need more throughput, add more stripes

RFT Service

  Orchestrates transfers on client’s behalf
  Third party transfers
  Interacts with many GridFTP servers

  Sees a bigger picture
  VO level

  Queue requests
  RFT should not say no

  Retry requests on failure
  Optimizes its workload

What RFT Does

  Reliable service
  DB backend
  Recovers from GridFTP and RFT service

failures

  Batch requests
  Light weight sessions
  Submit a Request
  Wait for notifications

  Started, finished, failed, etc

GridFTP: On Demand Service

  Resources are limited
  Data transfers are heavy weight operations
  Sometimes hardware is too busy

  Adding another transfer can cause thrashing
  Collective system throughput goes down

  GridFTP might say “no”

  Transfer requests happen immediately
  We do not queue, or delay transfers
  An established session means an active

transfer

Why Doesn’t GridFTP Queue

  A GridFTP session is heavy weight
  Idle sessions consume resources

  Backward compatible protocol

  Sometimes less is more
  Goal: Maximize the collective throughput

  Sum of all active transfer rates

  Too many transfers cause thrashing
  Results in lower collective throughput

  Avoid overheating system resources

  It is in the systems best interest
  We know what’s good for you "

GridFTP Session Resources

  Even for an idle session
  Active TCP control channel

  Part of the 959 protocol.
  A session is defined by a TCP connection

  Fork/setuid process
  Robustness
  File system/OS permissions

  OS buffer space
  Data channels require large TCP OS buffers

  Active transfers
  Lots of memory/Net/Disk IO

  Avoid too small of partitions

If GridFTP Always Said Yes

  OOM: the out of memory handle
  OS optimistic provision of TCP buffers
  Random processes will be killed
  Meltdown

  Shared FS overuse
  Pushing the I/O throughput beyond optimal
  Causing OOM on IOD machines

  Shares of bandwidth too small
  1 Million transfers at 500b/s each?
  OR 10 transfers at 100Mb/s each

Simultaneous Sessions

  Goal: Collective throughput
  entire servers bytes transferred / time

  Not the number of transfers at once

  Only reasons for more than 1 connection
  Provide an interactive service for many
  One session does not use all of the local

resource
  The remote side is the bottleneck

  Hide control messaging overhead in another
sessions data transfer payload

Remote Bottleneck

  Allow more than one simultaneous
transfer to use all resources

10G
b/s

Overhead hiding

Request 1

DATA 1

Request 1

Request 2

Request 3

DATA 1

DATA 2

DATA 3

Single Connection Many Connections

Request 2

DATA 2

Request 3

DATA 3

But We Want Queuing!

  May I offer you something in an RFT?
  RFT says yes
  Server side retries

  Light weight sessions
  GridFTP does the heavy lifting
  Queues up requests of pending transfers
  Notification upon completion
  Scalability

  Manages/Optimizes access to GridFTP
Servers

GridFTP
dst

GridFTP
src

RFT Session Interactions

RFT

GridFTP
src

GridFTP
dst

Client
Request

Notification

Scalability

  GridFTP
  Connection rejection is a feature

  It SHOULD say no

  Intended to scale to system transfer rates
  Not beyond them
  T

o
s
c
ale up add more nodes as stripes (dynamic backbends)

  Use faster NICs

  RFT
  Intended to scale to memory

  It should not say no

GridFTP Broke My Cluster!

  GridFTP will push hardware as hard as it is
allowed
  But not harder

  sudo rm –rf /
  Did sudo break the FS?

  ssh –u root host1 fork.bomb
  Did sshd take down the host?

  globus-url-copy –tcp-bs 100GB <src>
<dst>
  Did GridFTP break the cluster?

Resource Protection

  Limits need to be in place to protect
  Knowing it is ok to say ‘no’ is step 1

  What will hardware allow?
  How fast are my disks?
  How fast is my NIC?
  How fast is can I send data while using the

NetFS?
  How many WAN transfers can I support with

system memory?
  How many simultaneous transfers can are

reasonable to sustain?

Fast Transfer Resources

  CPU
  Packet switching

  Memory
  OS buffers (BWDP)
  User space buffers
 

W
A
N needs much more

  System bus
  Disk

  Shared FS? (net also)

  Network
  Router and LAN

TCP Buffers
CPU

Bus

Cluster Components

  Disk
  Shared I/O servers

  Net
  Backplate bandwidth

  Systems
  CPU/Memory
  Are IODs and

GridFTP servers co
located?

Shared IO Servers

GridFTP Backends

GridFTP Frontends

Connection Caps

  As a function of system memory
  Cap = |mem| / (2MB + avg(BWDP))
  Never more than |mem| / 4MB

service gsiftp
{
 instances = 20
 socket_type = stream
 wait = no

 env += GLOBUS_LOCATION=…
 env += LD_LIBRARY_PATH=…
 server = /usr/local/globus-4.0.1/sbin/globus-gridftp-server
 server_args = -i -p 2811

 disable = no
}

% globus-gridftp-server –connection-max 20

Connection Caps

  As a function of system bandwidth
  Cap =

min(FS.
B
W, Net.BW) / (Target average transfer rate)

  As a function of my gut
  20 - 50
  Best guess based on personal experience

T
ypically this is where collective BW plateaus

System Buffer Limits

  Limit the amount of OS space per
conneciton
  Auto tuning
  16MB - 64MB

% sysctl -w net.core.rmem_max=<value>
% sysctl -w net.core.wmem_max=<value>

% cat /proc/sys/net/ipv4/tcp_wmem
4096 16384 4194304

% cat /proc/sys/net/ipv4/tcp_rmem
4096 16384 4194304

GFork Memory Manager

  Dynamically rations memory
  10% of the allowed connections get 90% of

the memory
  Remaining session get half of available

memory

  Allows for high connection limits
  |mem| / 2MB

Future Work

  RFT Improvements
  Observe and react to GridFTP workloads

  Current transfer rates
  Requested TCP buffer sizes

  Dynamic connection limits
  More GFork memory algorithms
  Base on current throughput

  Queuing Service
  Mainly for use by RFT
  Eliminates possible starvation

  Formal Study

Conclusions

  GridFTP is an on demand service
  OK to say no

  RFT is a VO level queuing service
  please use it

  http://www.gridftp.org
  gridftp-user@globus.org

